Digital Creativity 8 (2) 47-58 @ Incellect Led 1997

Article

A Hybrid Expert System
as an Embedded Module

in Tutoring Systems

|. D. Zaharakis 12

email: john@math.upatras.gr

A. D. Kameas ?

email: kameas@math.upatras.gr

P. E. Pintelas 12

email: pintelas@math.upatras.gr

' Division of Computational Mathematics &
Informatics, Department of Mathematics, University
of Patras, Hellas

2 Educational Software Development Laboratory,
Department of Mathematics, University of Patras,

Hellas

Abstract

Every Intelligent Tutoring System (ITS), in order to
justify the term “intelligent’, has to contain the spe-
cific knowledge of the taught subject as well as to
embed several modules with those mechanisms that
are able to handle the knowledge in an intelligent
way (e.g., using rules of thumb, tricks etc.) and, in
general, behave in a way that would be considered
intelligent if observed by a human. Such modules are
apparently necessary in ITS generators too. In this
paper, the Hybrid Methodology Tutor (HMeT) is pre-
sented. HMeT is a hybrid expert system that is
embedded in an ITS generator and supports the de-
scription of the structure and dynamics of the
procedural knowledge, during authoring; it is also
responsible for its presentation during tutoring.
HMeT was designed and implemented to replace an
earlier version (MeT - Methodology Tutor), in order
to provide for higher inferential capabilities, better

Digital Creativity, Vol. 8, No. 2, July 1997

user interface and more wuser friendliness in
authoring as well as in tutoring. HMeT functions like
an expert system shell for knowledge base genera-
tion, provides graphical user interfaces and
prototyping facilities for fast application develop-
ment and uses frames for representing the subject
that will be taught and rules for inference.

Introduction

During the past two decades, Intelligent Tutoring
Systems (ITS) have been designed and developed in
an attempt to overcome the Shortcomings and inad-
equacies of traditional CAI systems. ITSs include
knowledge-based modules and require knowledge-
engineering skills from authors. Consequently, one of
the clearest ways to introduce experienced teachers
in building ITSs is to build easy-to-use ITS generators
(Woolf, 1987).

The major design issue that developers of ITS
generators face is the provision of mechanisms capa-
ble of encoding the requirements of the different
components of the tutoring process. Mechanisms of
this kind have to support the representation of what
information is to be taught (the domain) and of how
the training process can be carried out as efficiently
as possible (the instructional strategy) (Mispelkamp,
1992). In order to design the internal structures of the
knowledge domain, designers have to provide repre-
sentation mechanisms for two kinds of knowledge
{(Anderson et al, 1990; Woolf, 1987): declarative and
procedural. Declarative knowledge contains the infor-
mation that the trainees have to acquire. Procedural
knowledge consists of rules for the application of this
information to solve problems as well as guidelines
on how to apply these rules.

Although most knowledge representation
schemes tend to favour one kind over the other, ele-
ments of both must be included in every
knowledge-based system that is actually developed.
The form in which this knowledge is stored deter-
mines the ways it can be used, although authoring
systems tend to hide internal representation from au-
thors. No general form suitable for representation of
all types of knowledge exists (Rickel, 1989), and de-
signers of ITS generators have to choose among
alternatives, that range from making authors use Al
programming languages and techniques, to provid-
ing an informative interface with limited generality
of application.

This paper presents the design and the functional-
ity of the Hybrid Methodology Tutor (HMeT), a
hybrid expert system that is embedded in GENITOR.

daisy
Rectangle

GenNiTor (Kameas and Pintelas, 1997) is an ITS genera-
tor, that provides authors with tools that may be used
to completely represent the knowledge domain of a
training application, while ready-to-use solutions are
provided for most of the authoring activities that re-
late to the specification of instructional strategy. It
produces stand-alone intelligent training applica-
tions in subjects that are not necessarily related with
each other which attempt to transfer to the trainees
two kinds of skills: procedural knowledge on how to
apply a certain methodology and declarative knowl-
edge as the corresponding theoretical background to
support it. In order to overcome the complexity of the
authoring process that is due to the highly dynamic
nature of tutoring process, GENITOR employs two ex-
pert systems: the Domain expert Tutor (DeT) and the
Methodology Tutor (MeT). The former is employed
during the presentation of declarative knowledge
whereas the latter supports the description of the
structure and dynamics of the procedural knowl-
edge, during authoring, and is responsible for its
presentation during tutoring. From the experience
gained with the early version of such a system (MeT)
(Zaharakis et al, 1994) it was evident the need for
higher inferential capabilities, more authoring and
tutoring simplicity and a graphical user interface.
The design and development of HMeT, the system
that replaced MeT, were addressed towards the solu-
tion of these issues.

In the next sections, a background and related
work on knowledge representation paradigms as
well as HMeT requirements and design that consists
of knowledge representation, authoring and runtime
process will be presented. Throughout this paper, the
Waterfall Model development is used as an example
of a methodology that can be taught by HMeT. Fur-
thermore, the users who will develop a training
application using HMeT are called “authors’, (and are
not to be confused with the “authors” of this paper),
while the users of the training applications are called
‘trainees’.

Background and related work

The knowledge representation schemes that have
been proposed in the past are of two general types:
rules and structures. The former type includes logic, in
its many different forms, including propositional
logic, predicate logic, temporal logic, non-monotonic
logic, fuzzy logic etc., and production rules, while the
latter includes associative (semantic) networks,
frames, scripts and objects.

Logic has well defined syntax and semantics and
provides several types of inference that are used to au-
tomate the reasoning process. Although classical logic
cannot handle incomplete or imprecise information,
many systems have been developed or designed that

manipulate such information using techniques like
subjective Bayesian method, certainty factor model, Demp-
ster-Shafer theory or network models (Lucas and van der
Gaag, 1991). Propositional logic offers limited expres-
siveness and although predicate logic is much more
expressive, as a monotonic reasoning formalism, is not
suitable for real-world problems. Also, as mentioned
in (Lucas and van der Gaag, 1991), predicate logic is
in-decidable and any automated reasoning method for
it may lead to an NP-complete problem.

Production systems differ from logic, as they are
generally non-monotonic and they accept uncertainty
in the deductive process (Gonzalez and Dankel,
1993). Production systems involve rules that deter-
mine actions based on conditions and offer a uniform
model, with each rule having the ability to fire inde-
pendently. Production rules have been widely
adopted for domain knowledge representation,
mainly because they are simple and easy for humans
to understand, since they come close to the human
way of reasoning. They support a declarative style of
programming, seem well suited for representing heu-
ristic knowledge and allow the explanation of the
solution derived or the solving strategy followed by
the system. Their uniformity, however, masks under-
lying cognitive processes and limits application of
rules to relatively simple and strictly-structured do-
mains, where the reasoning processes are established
and clear. Consequently, they appear to be less effec-
tive in expressing more subtle forms of knowledge
which can be used to reason about the fundamental
nature and causes of interesting phenomena (Graham
and Jones, 1988). Another disadvantage is that when-
ever a rule is going to be added, deleted or modified,
contgadictory knowledge or infinite chains may be
caused (Gonzalez and Dankel, 1993).

A richer representation of the domain can be
achieved by using a highly interconnected network
of knowledge objects related with semantic links that
represent their properties and relationships. Semantic
nets (Quillian, 1968) are very good at expressing
knowledge about physical or conceptual objects,
class inheritance properties, defaults and perspec-
tives, and consequently they are commonly used to
structure more general kinds of information. Proce-
dures can then be used to traverse the network along
certain links and dynamically generate knowledge.
Such an organisation can simulate learning and en-
code meta-knowledge and common sense
knowledge, that can be used to determine the degree
and quality of trainees” misconceptions. Some weak-
nesses of this formalism that have been identified are
logical and heuristic inadequacy; in addition, it
sometimes may result in combinatorial explosion
(Graham and Jones, 1988; Gonzalez and Dankel,
1993).

Digital Creativity, Vol. 8, No. 2, July 1997

daisy
Rectangle

Frames are an equivalent (in terms of representa-
tion) way of grouping information. Each frame is a
record of ‘slots” and ‘fillers” (Minsky, 1975) and can be
thought of as a complex node in a network, with a
special slot filled by the name of the object that the
node stands for, and the other slots being filled with
the values of various common attributes associated
with such an object (Jackson, 1986). The knowledge
in frames is structured, and is organised hierarchi-
cally, so that the attributes of the higher classes are
inherited to the lower classes. In this way, frames are
able to determine their own applicability in given
situations. Also, the values of the slots can be dy-
namically stored during execution of a frame-based
system. Some heuristic inadequacy may appear in
the frame formalism too. Scripts (Schank and
Abelson, 1977) is a variation of frames, while objects
(Stefik and Bobrow, 1984) are governed by the princi-
ples of the object-oriented approach for knowledge
representation without avoiding the limitations of
the frame formalism.

The inadequacies of one knowledge representa-
tion paradigm may be handled effectively by another.
Several expert system tools offer hybrid representa-
tion facilities that combine the advantages of
different representation techniques. For example, Kas,
which was derived from PrROSPECTOR by removing the
domain knowledge base, and AL/x, use a combined
rule-based and semantic network representation
technique; systems like conPHYDE and AIRID were then
developed using kas, while aubiTorR was developed
using aL/x. Loors, combines an object-oriented repre-
sentation with a rule-based scheme; raLLADIO and its
embedded system TRANSISTOR SIZING SYSTEM were de-
veloped using Loors and as mentioned in (Waterman,
1986), aces is implemented in Loors too. KeE supports
frames, objects and rules in combination, while
TOMSTUNE and compass were developed using Keg. The
hybrid expert system CENTAUR is another system in
which a combination of frames and rules is used for
knowledge representation. Hybrid systems, combin-
ing frames and rules, offer a rich structural formalism
with inheritance properties, control over the objects
referred to and heuristic adequacy. In addition, the
organisation of system’s production rules into
taxonomies makes it easier for the domain expert to
understand and construct them and for the system
designer to contrel when and for what purpose par-
ticular collections of rules are used by the system
(Fikes and Kehler, 1985).

Design

Since applications produced with GEnITOR focus on
the training on some methodology, HMeT has to be
used both during authoring and teaching of this
methodology. A methodology is any procedure that

Digital Creativity, Vol. 8, No. 2, July 1997

consists of distinct, partially ordered tasks, actions to
carry out each task and results of each action. Such a
methodology has a well-defined structure that con-
sists of several layers of groups of activities (phases,
sub-phases etc.) and activities that make up a group.
Within each activity, artifacts are produced; these
have the meaning of inputs (prerequisites) or outputs
(objectives) of the activity. In order for an artifact to
be produced, other artifacts must already exist. In a
nutshell, the methodology is described by the au-
thors and is stored in the procedural domain
knowledge base of the application. From now on
methodology and procedural domain knowledge
base are used as synonymous. The trainees are then
asked to order and structure the different elements
that compose the methodology.

The presented hybrid expert system consists of
five modules. The Authoring Module that is the
knowledge base generator, the Authoring Interface
where the authoring process is realised, the Methodol-
ogy module that contains a general model of the
methodology and is capable of validating the train-
ees’ choices, the Tutoring module that contains a
general trainee model and its role is to transmit to the
Methodology module the trainees’ choices and to fil-
ter the Methodology module responses depending
on the trainees’ performance data and the Tutoring In-
terface where the whole interaction process is
realised. The Authoring Interface and the Authoring
Module are involved in the authoring process, while
the rest are involved in the tutoring process. A high
level architectural view of HMeT is given in Figure 1.
In the next, the knowledge representation paradigms
handled and the system modules will be described.
Knowledge representation
For HMeT system needs, the general structure of the
knowledge base has to be as abstract as possible, in
order to be applicable to different in nature method-
ologies and in the same time be compact for
authoring process simplicity. Also, a powerful
mechanism for knowledge manipulation and de-
tailed explanation has to exist. A hybrid scheme of
frame objects and production rules has been used in
order to represent the elements of the procedural
knowledge. The system has been implemented in
Prolog, so the declarative programming style has
been followed and several Prolog characteristics have
been inherited, like non-monotenic reasoning and
backtracking. Each kind of methodology element is
represented with a frame class; then, elements are in-
stantiations of objects in the class. Element properties
are represented with frame slots, while a set of
predefined rules describes the way slots are handled
by the system. On the frame slots, demons
(Waterman, 1986) are used that take action when a
slot value changes or is accessed. Frame objects per-

daisy
Rectangle

TRAINEE

Tutoring Interface

: Help Knowledge
Tut d
——>(utoring module %—— Base

A

Y

TUTORING PROCESS

AUTHOR

AUTHORING PROCESS

O— —~>(Authoring Interface](——)(Authoring modulﬂ

‘:-—'-|(Methodology module

/

l Knowledge Base
/

Figure 1. HMeT high level architecture

mit a straightforward visualisation of the methodol-
ogy evolution using a simulation environment;
simulation is considered as the best available tech-
nique to transfer procedural knowledge to the trainees
(Rickel, 1989). In addition, frame objects imply
authoring simplicity: authors define the elements that
will be used and assign appropriate values to the slots
of each frame instantiation. No programming skills or
knowledge of Al is required; a good understanding of
the methodology elements and a thorough design of
the methodology structure are enough.

The object classes that constitute the knowledge
base are group of activities, activity and artifact. The
class object is the generic class. The inheritance rela-
tionship, is_a, between the classes is described in
Figure 2. This is a hierarchical relation and is de-
duced by the rules of Methodology module; it can
not be changed by the authors. Every class low in the
hierarchy inherits the attributes of the higher classes
in the same branch of the treelike taxonomy while it
may have its own attributes.

Three other relations between the objects that de-
scribe the knowledge base model exist:

e composed_of, between a group of activities and one or
more groups of activities, or between a group of
activities and one or more activities; it indicates the
nested layers inside a group of activities that are
formed by several other groups of activities as
subgroups or simply activities

* produces, between an activity and one or more artifacts;
itindicates the artifacts that have been realised so that
other activities may be available

e needs, between an artifact and one or more artifacts; it
indicates the prerequisites of an artifact production,
in order to ensure the continuation of the training
process.

In Figure 3, the different objects manipulated by
the system and the relationships between them are
represented.

The frames in Figures 4, 5, 6 describe the artifact
class, the activity class and the group of activities
class, respectively. All kinds of frames have a class

Figure 2. Object classes manipulated by the system in
a treelike taxonomy.

[(;bj t J
isa o \\ is_a
i =

activity

\

Is_a

group of activities

Digital Creativity, Vol. 8, No. 2, July 1997

daisy
Rectangle

@roup of activities chelD

composed_of

Y
@ronp of activities LBVCID

composed_of

composed_of

@roup of activities Level n

composed_of

produces

Activity

needs

Figure 3. The relations between objects

and an is_a field. The value of the class field is the
name of the class (e.g., project, phase, information
etc.). The is_a field is an inheritance relationship and
its value indicates the parent of each class. The values
of these two fields are system specified and can not
be changed by the authors.

All classes have three attributes in common that
are inherited from the generic class object:

= identifier that indicates the name that the class assumes
in a specific methodology; its value is set by the system
in the object definition during the authoring process

o [abel that identifies the class object; its value is specified
by the authors who model the methodology

e state that indicates the state of the class; its value is
default in the beginning but is changed along the
tutoring or runtime process. Permitted values for the
classes activity and group of activities are ‘not started’,
‘started’, ‘terminated’; for the class artifact are ‘not
existing” and “existing’.

The frames of group of activities contain two ad-
ditional attributes:

e level takes values ranging from 0 ton, ne N, and indicates
the nesting level of each class of group of activities;

¢ rank indicates the sequence in which the group of
activities is involved in the methodology; the rank slot
is filled automatically by the Authoring Module and
depends on the order the authors have written the
instances of the class group of activities.

The slot type, contains information about the type
of the artifact (e.g., text, sound, picture, video etc.)
and it concerns the future development of DeT for
multimedia handling.

Digital Creativity, Vol. 8, No. 2, July 1997

class: <name of the class>

is_a: <nate of the parent of the class>

— slots —

identifier: <name that the class instantiates in the
methodology>

label: <instance description>

state: <instance state>

type: <instance type>

Figure 4. Arfifact class

class: <name of the class>

is_a: <name of the parent of the class>

— slots —-

identifier: <name that the class instantiates in the
methodology>

label: <instance description>

state: <instance state>

Figure 5. Activity class

class: <name of the class>

is_a: <name of the parent of the class>

— slots —-

identifier: <name that the class instantiates in the
methodology>

label: <instance description>

level: <level indicator>

rank: <rank indicator>

state: <instance state>

Figure 6. Group of activities class

daisy
Rectangle

Demons are attached procedures to frame slots
that are activated by changing or accessing slot val-
ues. They differ from rules in the sense that they are
activated when a change or an access of the value of
the slot they are attached to takes place; on the con-
trary, the applicability of rules is repeatedly tested.
Because of their activation when the slot values are
affected, they often are referred to as If Needed,
If Added or If_Removed. Such demons (used in HMeT)
like read frame, that takes information from the
frames slots, or affect that modifies the frame slot
value, and their functionality, are represented in the
next example; for a better understanding of the exam-
ple, a small part of the knowledge base (methodology
of Waterfall model) is presented too.

instance of (artifact,art3)
instance of (arti fact,art2)
instance_of (group_of_activities, gact5)
inst:ance_constant(gactS, [slot (label, [‘Operation &
Maintenance’]),
slot (level, [1]),
slot (rank, [5])])
instance_constant(art3, [slot(label, [‘System Model])1)
instance constant {art2, [slot (label, ["Feasibility
Report’])])
j_nstancefvariable(artB, [slot {state, [‘not existing’])])
instmcekvaria.ble(artZ, [slot(state, [‘not existing’l)])
instance_variable(gactS, [slot(state, [‘not started’])]}
read frame tName,Attribute,Value)
€.8., read frame(’System Model’, state,Value)
retums Value = ['not existing’]
read_frame('Operation & Maintenance’, state, Value)
returns Value = [’not started’]
affect (Name, Attribute, Value) .
e.g., affecty 'Feasibility Report’, state, [existing])
changes the value of the state slot of the ‘Feasibility
Report’ artifact from ‘not existing’ to existing i.e.,
after affect firing, the knowledge base is updated to
instance_variable(artz, [slot (state, [existing])]).

The Authoring Subsystem
HMeT has to support the generation of the domain
knowledge base in an easy and flexible way and al-
low its debugging and correctness-testing. The
authors should be supported in describing or modi-
fying the model of a methodology in order to teach it,
and in executing this model in order to verify and
validate it. The authoring subsystem contains the
Authoring Interface and the Authoring Module,
which are involved in the authoring process. The
former is a graphical user interface through which
the whole authoring process is realised in an easy-to-
use way. Using it, authors describe the methodology
to be taught; then the Authoring Module generates
the knowledge base. '

The Authoring Interface provides the necessary

utilities for knowledge base creation, testing and vali-
dation (Figures 7, 8). These operations can be
executed by pressing the appropriate screen button.
When the Define Vocabulary button is depressed, a
template showing the current instantiation of the
names of the classes of objects handled by the system
is presented. The modification of these names is at
authors’ preference. These names are used by the
Authoring Module during the authoring process and
by the Methodology and Tutoring Modules during
the runtime process. In Figure 7, the default system
vocabulary is illustrated. The three windows at the
right side of the screen are the space where the au-
thors can specify the names of the classes; as the class
group of activities may be composed of several layers
(i.e., subgroups), the names of these classes are dis-
played in the window labelled ‘Group of Activities’.
The current instantiation of the whole structure of the
methodology classes is displayed in the window la-
belled “Vocabulary’.

By pressing the Create/Modify Links button (Figure
8), the authors can select a class that they want to in-
stantiate. This can be done by subsequently pressing
the proper button in the floating toolbox on the
screen; in Table I, each button functionality is ex-
plained. Then, they drop it in the desired location on
the screen and type the name that the class instanti-
ates; the form of the pointer is changed according to
the selected button from the toolbox. In order to cre-
ate another instance the previous process has to be
repeated. The authors need not describe the relations
between the objects as it was the case in MeT; these
are created automatically by the Authoring Module
when an object is dragged'n’dropped on another ob-
ject, as it is described in the following. However,
because the artifacts have the meaning of inputs (pre-
requisites) or outputs (objectives) of the activity, the
authors have to declare the artifacts that initially ex-
ist, which are necessary for the commencement of the
methodology; this is achieved by using the last but-
ton at the bottom of the toolbox. For the same reason,
while the relations ‘composed_of’ and ‘produces’ are
implied from the position of the objects in the screen,
the relation ‘needs’ is not apparent; so, when an arti-
fact is selected, the symbol appears before the
artifacts which are required in order for the selected
artifact to be produced. The authors can check the
correctness and validity of the methodology through
simulation by pressing Test the model button.

The Authoring Module is the underlying mecha-
nism of the Authoring Interface. It contains the
general form of the manipulated classes of objects
and creates the frames of the domain knowledge base
that will be handled by the system. Since it contains
the rules about the valid relations between classes of
objects, as well, it does not allow the authors to create

Digital Creativity, Vol. 8, No. 2, July 1997

daisy
Rectangle

Eiic Action Elements View Help

| Define Vocabulary 1 Cieata 7 Medi L i

Group of Activities [Level OF Project
{Group of Activities [Level 1}: Phase
Activily: Activity

JArtifact: Information

Figure 7. Authoring interface - Define Vocabulary operation

non-permissible links between objects; instead, an er-
ror message and its explanation is provided to the
authors. When an object is dragged'n’dropped, the
Authoring Module uses these rules to create the valid
relations between objects without any further effort
by the authors. All the operations in Authoring Inter-
face, except Test the model, are handled by the
Authoring Module.

The Runtime Subsystem and the Tutoring
Process

The runtime subsystem consists of the Methodology
module, the Tutoring module and the Tutoring Inter-
face which are involved in the execution of the
tutoring application. All these modules interact with
each other in order to support the tutoring process.
This process is realised by using the model of the
methodology that the authors had described in the
Authoring Interface and a trainee model that is up-
dated during the runtime process and is displayed in
the Tutoring Interface.

During the tutoring process the comments and
the instructions of the several system modules have
to be displayed on-line. According to (Kameas and
Pintelas, 1997), tutoring systems must employ an in-
structional strategy which entails dialogue
management that is based on the knowledge domain
and makes use of a trainee model in order to execute
a learning scenario; a learning scenario is considered
as the context in which training takes place. Conse-

Digital Creativity, Vol. 8, No. 2, July 1997

quently, the system must allow the execution of dif-
ferent tutoring strategies as well as the temporary
interruption of the execution process and afterwards
the re-entry in the environment. A trainee model that
records the personal characteristics and progress in
the methodology of every trainee has to be main-
tained. According to these, help of different verbosity
has to be displayed. In addition, the trainees should
be provided with help utilities, like access in a Li-
brary of units of declarative knowledge or a Glossary
of terms of the specific methodology that is taught.
The Tutoring Interface (Figure 9) presents the
trainee with the list of group of activities and the list
of activities. The trainees have to make a choice
among the elements of the lists - or properly press the
button labelled ‘Finish Current Group of Activities’
in order to terminate an already started group of ac-
tivities - that is transferred to the Methodology
module in order to check its correctness. The Meth-
odology module returns a message to the Tutoring
module which has in turn to decide the answer that
will be presented to the trainees as well as its verbos-
ity. During the runtime process, the trainees’
advancement is displayed in a graphical form in a
separate window on the screen. The trainees are al-
lowed to interrupt the runtime process in order to
execute other system utilities like access a methodol-
ogy topics library or a glossary of related terms.
When an interrupt’is caused the system status is
saved; the re-entry in the environment is achieved in

daisy
Rectangle

@Hequiremﬁnt: Analysis & Definition
> Establish System Needs

(2 Feasibility Study

| Feasibility Report
& System Hodelling
Syslem Model

] Requirements Definition

] Requirements Definition Documents

O Requirements Specification

System Spénificatio&

iFie

5] Requirements Specification Documents

Figure 8. Authoring interface - Create/Modify Links operation

the position that the interrupt was caused. The open
architecture of the presented system enables it to em-
ploy several instructional strategies that can be
implemented as autonomous, external parts and can
be provided as agents. Like in MeT (Zaharakis, et al,

Table I. Floating toolbox functionality

A

Standard cursor form.

The authors can create a group of activities
instantiation. The relation ‘composed_of’ between
groups is implied and created by Authoring
Module.

The authors can create an activity instantiation. The
relation ‘composed_of” between groups and
activities is implied and created by Authoring
Module.

The authors can create an artifact instantiation. The
relation ‘produces’ between activities and artifacts
is implied and created by Authoring Module.

i
o

|

The authors can create an initial artifact instantiation.

1994), three agents are used for this purpose: HMeT-
Guide (G-HMeT) ‘guides’ trainees through a
simulation of the methodology evolution by selecting
itself each time the correct activity; HMeT-Coach (&
HMeT) supports a learn-by-discovery process of the
methodology, and HMeT-Judge (J-HMeT) leaves con-
trol of the simulation entirely at the trainees’ hands,
by adopting a role of ‘judge’ of their selections. Every
agent has its own learning scenario and the trainees
have several operations at their disposal.

The Methodology module contains the rules that
handle the knowledge base and produces the data for
the explanation process. An object that has been real-
ised is an object in state “existing’, for the artifact, or
“terminated’, for the other objects. An object realisable
is an object that, in the next action, can be in state
‘started’, for the group of activities and the activities or
‘existing’, for the artifacts. An artifact is realisable if all
the artifacts that it needs have been realised. An activ-
ity is realisable if all the artifacts that the activity
produces are realisable or have been realised. A group
of activities is realisable if the objects, which compose
it, exist and are realisable or have been realised.

The rules of the Methodology module make infer-
ences based on the value of the frames slots and fire
actions depending on these. In the following, the
most important rules and their syntax in BNF form
will be described; these are summarized in Table II.

Here, {charstring, stringname, integer, ' 1”,",’, W
success, failure, failure in the context, failure out of the
context, not started, already started, already terminated,

Digital Creativity, Vol. 8, No. 2, July 1997

daisy
Rectangle

Eilz Help

He

Jubizstives lrrmmg Darsi aulimrrsd
Jupilem Archilecture
A5nftwarn Specifinalion
{intaface 5pecification
AUwmpunent Specibealion

Nnda Stosshae S penifinarinn

11 he activity that you suggest shauld be carried out duutswl.l:zu phaie
t eannnt. hnwever ba undartabns wdhaut the dinwed nhjentive a1

ﬁﬂmuilnmi Annlpiiz & Nefndtinn
) Eptablish Syttom Naads
"Zi teaolalily Stunds
ol Tipsiem Madeling
123 Requrcwmont: Dclinilion
3 Hepmemenly Specilication
) Nystam Specitication
| = Dralt Uzer Manuad Authoring
: _{'i Serlen & Solleat = Ureingn

mplenesdatiun & Uasll | eshiny
teqeatinn & Nhystem Teasting

O pcration: L Maintcaance

H ruuiensesty Analeyic & Defastnn
astem & Dofiwne I msign

Bachilectral Desino

i Compurnient Deing:
Data Niciinnmy Aurhari
s Eli B £

D ala Btiwctury Dumyn

22 Intnfnce Drsinn

i) Companant Desigs

Deagn] Itppr[&ull'?anng

ISeanncd e Dea Shwe Diegeam Dnniagn

Figure 9. Tutoring interface

ARTIFACT, ACTIVITY, LEVEL)} is the set of terminals
and {antecedent, consequent, rule, rule_name, vari-
able, object, list_of_lists, list, evaluation, string_list,
string, nature, i} is the set of the nonterminals. The
charstring terminal may be any sequence of alphanu-
meric characters or special symbols, the stringname
terminal may be any sequence of alphanumeric char-
acters or underscore character with the restriction
that the first character must be a lower case letter, and
the integer terminal ranges between 0 and n, ne N.
The values of the evaluation nonterminal are de-
pended on the rule that contains the evaluation
nonterminal. These rules and the assigned values for
the evaluation nonterminal will be described in the
following.

test_chject (Object, List of realisable conditions,
List of not_realisable conditions,

List _of conditions which have been_realised)

This rule infers what has to be done with refer-
ence to be an object started or what is necessary with
reference to be an object terminated.

start_group_of_activities (Group, Evaluation,
List_of realisable_activities,
List_of_not_realisable activities,
List_of_activities_that_have been realised)
This rule makes inferences about the status of a
group of activities which means, in what depth of the

group of activities has the process proceeded in. It re-
turns the Evaluation; the permitted values are:

Digital Creativity, Vol. 8, No. 2, July 1997

e ‘success’ if the list of realisable activities is not empty
or the list of not realisable activities is empty; in this
case, that is if the group of activities is allowed to start,
the state of the group of activities is set to ‘started’

e ‘failure’ if the list of realisable activities is empty

and the list of not realisable activities is not empty

‘already started’ if the state of group of activities

is started

[]

‘already terminated’ if the state of group of
activities is terminated.

do_activity(Activity,Evaluation,

Table Il. The rule syntax in BNF form

rule — if antecedent then consequent
antecedent — rule-name (variable)
rule-name > stringnante
variable — object, list_of_lists |
object , evaluation, list_of_lists
object — string
list_of_lists — list |
list, list_of_lists
list — [string_list]
string_list -» string |
string, string_list
string — charstring
evaluation > success | failure | failure in the confext |
Sailure out of tie context | already started |
not started | already terminated
consequent — (nature, string)

nature - ARTIFACT | ACTIVITY | LEVEL i

i — integer

daisy
Rectangle

List_of_realisable_artifacts,

List_of not_realisable_artifacts,
List_oE_artifactsﬁwhich_havefbeen_realised,
List_of_the started_contexts,

List_of_ the not_started_contexts) .

This rule makes inferences about the permission
of an activity to be done. It returns the Evaluation.
It returns, also, the contexts that the activity is real-
ised; context is the group of activities within which
the activity is realised. The permitted values are:

* ‘success’ if the list of started contexts is not empty
and the list of not realisable artifacts is empty; the state
of activity is set to ‘terminated’ and the state of the
produced artifacts is set to ‘existing’

e ‘failure out of the context’ if thelist of started
contexts is empty

e ‘failure in the context’ if the list of not

realisable artifacts and the list of started contexts are

not empty

‘already started’ if the state of the activity is

‘'started’

* ‘already terminated’ if the state of the activity is
‘terminated’.

search_context (Activity,
List_of_started_group,

List_of_notfstarted_or_terminated_groups).

This rule makes inferences about the location of
an activity. It searches the groups of activities and re-
turns the one that the activity is found in.

terminate_group_of_activities(Group,Evaluation,
List_of_realisable_activities,
List _of_not_realisable_activities,

List_of_activities_that_have_been realised).

This rule makes inferences about the validity of
the termination of a group of activities. It returns
Evaluation; the permitted values are:

‘success’ if the list of realisable activities and the list
of not realisable activities are empty and the state of
the group of activities is ‘started’; the state of the
group of activities is set to ‘terminated’

‘failure’ if the list of realisable activities or the list of
non-realisable activities are not empty and the state of
the group of activities is ‘started’

‘already terminated’ if the stafe of the group of
activities is ‘terminated’

‘not started’ if the state of the group of activities is
‘not started’.

The Tutoring module transmits the trainees’ que-
ries to the Methodology module, filters its messages,
according to the initial options and the trainees” ac-
tions, and accompanies them with the suitable
messages. [t uses the Help Knowledge Base, that con-

tains predefined dialogues, for its verbalism. Accord-
ingly to the advancement of the tutoring process and
the user model that HMeT keeps for every trainee,
Tutoring module adapts its dialogues. An adaptation
mechanism uses the produced and the needed arti-
facts in order to explain how the methodology
proceeds or what actions are necessary for the meth-
odology continuation. The predefined dialogues and
the produced data during the tutoring process are
composed by the Tutoring module and are presented
to the trainees. The parameters used by Tutoring
module are of two kinds: those that correspond to
fixed options in the commencement of the simulation
or the runtime process and may be changed by the
authors and those that depend on the trainees’ per-
formance. The former are those that determine the
educational strategy that will be followed, the maxi-
mum number of errors and the help level. During
simulation of the methodology, the Tutoring module
judges the correctness of a trainee’s action and dis-
plays the appropriate messages. The maximum
number of errors is a positive integer which, when
reached, the process is stopped (if it is O there is no
limit on the number of errors). The help level is an in-
teger between 0 and 3 in case of failure or 0 and 1 in
case of success. The larger the number of the help
level the more the help that Tutoring module out-
puts. In simulation the help level is always equal to 0,
otherwise it depends on the number of trainees’ con-
secutive errors. The parameters that depend on the
trainees” actions are the number of consecutive er-
rors, the total number of the errors and the depth of
help level. The number of consecutive errors is an in-
teger between 0 and 4, which indicates the number of
consecutive trainees’ errors. The total number of er-
rors is an integer between 0 and author-defined
MAXERR, which indicates the total allowed number
of trainees’ errors along the runtime process. The
depth of help level is an integer calculated by Tutor-
ing module and it depends on the educational
strategy and the number of consecutive trainees’ er-
rors.

Conclusions

In this paper, a hybrid expert system (HMeT) that has
been used as embedded module in a ITS generator
(GENITOR), was presented. The hybrid expert system
was used in order to relieve the authors from having
to anticipate all the possible (correct and incorrect)
sequences or combinations of methodology elements
that trainees may form, and then provide system re-
sponses for each. Authors simply describe these
elements; it is the task of HMeT to ensure their valid
ordering and to mediate tutoring interaction. It is es-
timated that average authors will use less than five
inheritance levels and a relatively small number of

Digital Creativity, Vol. 8, No. 2, July 1997

daisy
Rectangle

frame instantiations. Thus, the average methodology
structure should not impose heavy computational
overheads. The simplicity of the authoring process
and the efficient and effective manipulation of the
knowledge base made the hybrid scheme preferable.
The authoring simplicity has been achieved thanks to
the knowledge representation formalism that the sys-
tem employs. HMeT utilises its own graphical
environments for knowledge base construction and
tutoring process and supports fast application devel-
opment, prototyping and validation through
simulation.

The whole development process of HMeT took
about a person year. Two development platforms
were used for HMeT implementation; the Authoring
Interface, the Tutoring Interface and the Advance-
ment Graphical Representation module were
implemented in Borland C++ 4.5, whilst the
Authoring Module, the Methodology Module and
the Tutoring Module were implemented in Amzi
Prolog 3.3. The whole integrated application runs un-
der Windows 3.1 or later. During design, great care
was taken to facilitate the interaction between system
and authors. In general, the authoring process is
rather complex, entailing several user actions of di-
verse context. To face this problem, the system adopts
an interaction metaphor based on a goal-plan decom-
position of the authoring process and clearly
represents context of operation and authoring ac-
tions. The development of a methodology using
HMeT has been dramatically simplified compara-
tively to the same process using MeT. The Authoring
Module undertakes the knowledge base generation,
creates the relations between the objects and prevents
the invalid links; the authors just specify the names
of the objects that will be used by the system. How-
ever, in order for a methodology to be a complete
tutoring application, it also requires the construction
of the declarative knowledge, the creation of exer-
cises and tests etc. All the appropriate tools are
provided by Genitor. The testing and validation of
the methodology have been simplified, too. The
graphical user interface used by HMeT contains all
the necessary information for the realisation of this
process without any information overhead.

HMeT was validated in two phases. The first con-
cerned HMeT as a stand alone system whilst the
second concerned HMeT as an embedded module
within Genrtor and involved the redevelopment of an
intelligent training application. This application was
METHODMAN Ii+, an ITS which aims at teaching the ad-
aptation of Mepoc methodology in the domain of
software project management. The development of
the methodology using HMeT took a non-expert au-
thor less than half the time it has taken using MeT
which was approximately one person week.

Digital Creativity, Vol. 8, No. 2, July 1997

Future plans include the design and development
of a large society of specialized agents who will im-
plement several tutoring strategies by forming
subject- or strategy-depended teams. In the context of
GENITOR, the authors of this paper aim to investigate
the efficiency of hierarchical and non-hierarchical for-
mation of agent teams. Furthermore, the current
system version has to be supplemented with intelli-
gent modules for multimedia database management,
user interactions management and methodology
specification, in order for GENITOR to be able to handle
generic methodologies that will be described through
a user-friendly interface and presented in full multi-
media.

References

Anderson, J.R., Boyle, C.F,, Corbett, A.T. and Lewis,
M.W. (1990).
‘Cognitive Modelling and Intelligent Tutoring’, in W.J.
Clancey and E. Soloway, (eds), Artificial Intelligence
and Learning Environments, 7-49, MIT Press.

Fikes, R. and Kehler T. (1985).
“The Role of Frame-based representation in
Reasoning’. Communications of the ACM, 28(9), 904-920.

Gonzalez, A.]. and Dankel, D.D. (1993).
The Engineering of Knowledge-based Systems, Prentice-
Hall, Inc.

Graham, L. and Jones, P. L. (1988).
Expert Systems, Knowledge, Uncertainty and Decision.
Chapman and Hall Computing.

Jackson, P. (1986).
Introduction to Expert Systems. Addison-Wesley
Publishing Company, Inc.

Kameas, A.D. and Pintelas, P.E. (1997).
The Functional Architecture and Interaction Model of
a GENerator of Intelligent TutORing applications,
Journal on Systems and Soffware Elsevier Science Inc (to
appear).

Lucas, P. and van der Gaag, L.C. (1991).
Principles of Expert Systemns, Addison-Wesley.

Minsky, M. (1975).
‘A Framework for Representing Knowledge’, in P. H.
Wiston, (ed.), Psychology of Computer Vision,
Cambridge, MA: MIT Press.

Mispelkamp, H. (1992).
Generic tools for courseware authoring, in S. A. Cerri
and J. Whiting, (eds.), Learning Technology in the
European Communities, 585-593, Kluwer Academic
Publishers.

Quillian, M.R. (1968).
Semantic Memory. In Minsky, M. (ed.), Semantic
Information Processing, Cambridge, MA: MIT Press.

daisy
Rectangle

Rickel, J.W. (1989).
Intelligent Computer-Aided Instruction: a survey
organized around system components, I[EEE

Transactions on Systems, Man and Cybernetics, 19(1): 40-57.

Schank, R.C. and Abelson R.P. (1977).
Scripts, Plans, Goals and Understanding. Hillsdale, NJ:
Lawrence Erlbaum.

Stefik, M.J. and Bobrow, D.G. (1984).
‘Object-oriented programming: themes and
variations’. The AI Magazine, 2(4): 40-62.

Waterman, D.A. (1986).
A Guide to Expert Systems, Addison-Wesley Publishing
Company, Inc.

Woolf, B.P. (1987).
Theoretical frontiers in building a machine tutor, in P.
Kearsley, (ed.), Artificial Intelligence and Instruction,
229-267, Addison-Wesley.

Zaharakis, 1.D., Kameas, A.D. and Pintelas, P.E. (1994).
MeT: The Expert Methodology Tutor of GENITOR,
Microprocessing and Microprogranuming, 40(10-12): 855-860.

Digital Creativity, Vol. 8, No. 2, July 1997

daisy
Rectangle

